Field, K.J., Duckett, J.G., Cameron, D.D. et al. (1 more author) (2015) Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. Annals of Botany, 115 (6). 915 - 922.
Abstract
BACKGROUND AND AIMS: Following the consensus view for unitary origin and conserved function of stomata across over 400 million years of land plant evolution, stomatal abundance has been widely used to reconstruct palaeo-atmospheric environments. However, the responsiveness of stomata in mosses and hornworts, the most basal stomate lineages of extant land plants, has received relatively little attention. This study aimed to redress this imbalance and provide the first direct evidence of bryophyte stomatal responsiveness to atmospheric CO2. METHODS: A selection of hornwort (Anthoceros punctatus, Phaeoceros laevis) and moss (Polytrichum juniperinum, Mnium hornum, Funaria hygrometrica) sporophytes with contrasting stomatal morphologies were grown under different atmospheric CO2 concentrations ([CO2]) representing both modern (440 p.p.m. CO2) and ancient (1500 p.p.m. CO2) atmospheres. Upon sporophyte maturation, stomata from each bryophyte species were imaged, measured and quantified. KEY RESULTS: Densities and dimensions were unaffected by changes in [CO2], other than a slight increase in stomatal density in Funaria and abnormalities in Polytrichum stomata under elevated [CO2]. CONCLUSIONS: The changes to stomata in Funaria and Polytrichum are attributed to differential growth of the sporophytes rather than stomata-specific responses. The absence of responses to changes in [CO2] in bryophytes is in line with findings previously reported in other early lineages of vascular plants. These findings strengthen the hypothesis of an incremental acquisition of stomatal regulatory processes through land plant evolution and urge considerable caution in using stomatal densities as proxies for paleo-atmospheric CO2 concentrations.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company.This is a pre-copyedited, author-produced PDF of an article accepted for publication in Annals of Botany following peer review. The version of record Field, K.J., Duckett, J.G., Cameron, D.D. and Pressel, S. (2015) Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations. Annals of Botany, 115 (6). 915 - 922 is available online at: http://dx.doi.org/10.1093/aob/mcv021. |
Keywords: | Anthoceros punctatus; Atmospheric CO2; Funaria hygrometrica; Mnium hornum; Phaeoceros laevis; Polytrichum juniperinum; bryophytes; carbon dioxide; evolution; hornworts; mosses; palaeo-atmospheric environment; stomatal density |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) > Department of Animal and Plant Sciences (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 04 Jun 2015 08:52 |
Last Modified: | 03 Nov 2017 21:20 |
Published Version: | http://dx.doi.org/10.1093/aob/mcv021 |
Status: | Published |
Publisher: | Oxford University Press |
Refereed: | Yes |
Identification Number: | 10.1093/aob/mcv021 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:86084 |