Ihli, J, Wong, WC, Noel, EH et al. (5 more authors) (2014) Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Communications, 5. 3169. ISSN 2041-1723
Abstract
The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We show that amorphous calcium carbonate can dehydrate before crystallizing, both in solution and in air, while thermal analyses and solid-state nuclear magnetic resonance measurements reveal that its water is present in distinct environments. Loss of the final water fraction-comprising less than 15% of the total-then triggers crystallization. The high activation energy of this step suggests that it occurs by partial dissolution/recrystallization, mediated by surface water, and the majority of the particle then crystallizes by a solid-state transformation. Such mechanisms are likely to be widespread in solid-state reactions and their characterization will facilitate greater control over these processes.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2014, Ihli, J, Wong, WC, Noel, EH, Kim, Y, Kulak, AN, Christenson, HK, Duer, MJ and Meldrum, FC. This is an Open Access article distributed in accordance with the Creative Commons Attribution (CC BY 3.0) licence, which permits others to distribute, remix, adapt, build upon this work, and license their derivative works on different terms, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 09 Mar 2015 11:05 |
Last Modified: | 30 Jun 2020 14:49 |
Published Version: | http://dx.doi.org/10.1038/ncomms4169 |
Status: | Published |
Publisher: | Nature Publishing Group |
Identification Number: | 10.1038/ncomms4169 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:83532 |