Pursehouse, R.C. and Fleming, P.J. (2001) The Multi-Objective Genetic Algorithm Applied to Benchmark Problems An Analysis. Research Report. ACSE Research Report 796 . Department of Automatic Control and Systems Engineering
Abstract
The multiobjective genetic algorithm (MOGA) has been applied to various real-world problems in a variety of fields, most prominently in control systems engineering, with considerable success. However, a recent empirical analysis of multi-objective evolutionary algorithms (MOEA's) has suggested that a MOGA-based algorithm performed poorly across a diverse set of two-objective test problems. In this report, it is shown that a conventional MOGA with standard settings can provide improved performance, but this still compares unfavourably to the best-performing contemporary MOEA, the Strength Pareto Evolutionary Algorithm (SPEA). The importance of the MOEA, as a framework is stressed and consequently, a real-coded MOGA for real-parameter multi-criterion problems is developed using modern gudelines for the design of evolutionary algorithms. This MOGA is shown to outperform the "best" MOEA, rather that a considered implementation of the methodology is required in order to reap full rewards. This study also questions the effectiveness of the traditional fitness sharing method of niching, with respect to the current set of multiobjective benchmark problems.
Metadata
Item Type: | Monograph |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | The Department of Automatic Control and Systems Engineering research reports offer a forum for the research output of the academic staff and research students of the Department at the University of Sheffield. Papers are reviewed for quality and presentation by a departmental editor. However, the contents and opinions expressed remain the responsibility of the authors. Some papers in the series may have been subsequently published elsewhere and you are advised to cite the later published version in these instances |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) > ACSE Research Reports |
Depositing User: | MRS ALISON THERESA BARNETT |
Date Deposited: | 30 Jan 2015 11:57 |
Last Modified: | 28 Mar 2018 08:29 |
Status: | Published |
Publisher: | Department of Automatic Control and Systems Engineering |
Series Name: | ACSE Research Report 796 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:83186 |