Edmunds, RK, Cockerill, TT, Foxon, TJ et al. (2 more authors) (2014) Technical benefits of energy storage and electricity interconnections in future British power systems. Energy, 70. 577 - 587. ISSN 0360-5442
Abstract
There are concerns that the GB (Great Britain) electricity system may not be able to fully absorb increasing levels of variable renewables with consequent implications for emission reduction targets. This study considers the technical benefits of additional energy storage and interconnections in future GB electricity systems. Initially a reference model of the GB electricity system was developed using the EnergyPLAN tool. The model was validated against actual data and was confirmed to accurately represent the GB electricity system. Subsequently, an analysis of four possible scenarios, for the years 2020 and 2030, has been performed and the maximum technically feasible wind penetration calculated. Finally, the level of interconnection and energy storage has been varied to assess the technical benefits to the operation of a 2030 GB electricity system. We conclude that increasing levels of interconnection and energy storage allow a further reduction in the primary energy supply and an increase in maximum technically feasible wind penetration, permitting the system emissions intensity to be reduced from 483 gCO/kWh in 2012 to 113 gCO/kWh in 2030. Increasing the levels of interconnection and energy storage has significant technical benefits in the potential future GB systems considered.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2014. Elsevier. Uploaded in accordance with the publisher's self-archiving policy. NOTICE: this is the author’s version of a work that was accepted for publication in Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Energy, 70,(2014) DOI10.1016/j.energy.2014.04.041 |
Keywords: | GB energy system; energy storage; interconnection; maximum wind penetration; modelling; simulation |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) > Energy Research Institute (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) > Energy Tech & Innovation Initiative (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 23 Jan 2015 10:53 |
Last Modified: | 16 Jan 2018 08:23 |
Published Version: | http://dx.doi.org/10.1016/j.energy.2014.04.041 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.energy.2014.04.041 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:82657 |