Motaman, S, Mullis, AM, Borman, DJ et al. (2 more authors) (2013) Numerical and experimental modelling of back stream flow during close-coupled gas atomization. Journal of Computers and Fluids, 88. 1 - 10. ISSN 0045-7930
Abstract
This paper reports the numerical and experimental investigation into the effects of different gas jet mis-match angles (for an external melt nozzle wall) on the back-stream flow in close coupled gas atomization. The Pulse Laser Imaging (PLI) technique was applied for visualising the back-stream melt flow phenomena with an analogue water atomizer and the associated PLI images compared with numerical results. In the investigation a Convergent–Divergent (C–D) discrete gas jet die at five different atomization gas pressures of 1–5 MPa, with different gas exit jet distances of 1.65, 1.6, 1.55, 1.5, 1.45 and 1.40 mm from the melt nozzle external wall, was combined with four melt nozzles of varying gas jet mis-match angles of 0°, 3°, 5°, and 7° relative to the melt nozzle external wall (referred to as nozzle types 1–4). The results show that nozzle type 1 with the smallest mis-match angle of zero degrees has highest back-stream flow at an atomization gas pressure of 1 MPa and a gas die exit jet located between 1.65 mm and 1.5 mm from the external melt nozzle wall. This phenomenon decreased with increasing mis-match angle and at higher atomization gas pressure. For nozzle type 2, with a mis-match angle of 3 degrees, a weak back-stream flow occurred with a gas exit jet distance of 1.65 mm from the melt nozzle external wall. For a gas pressure of 1 MPa with a decrease in the gas jet exit distance from the external wall of the melt nozzle this phenomenon was eliminated. This phenomenon was not seen for nozzle types 3 and 4 at any gas pressure and C–D gas exit jet distances.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2013, Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in the Journal of Computers and Fluids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computers and Fluids, 88, 2013. http://dx.doi.org/10.1016/j.compfluid.2013.08.006 |
Keywords: | Back-stream flow; external wall; gas atomization; melt nozzle; mis-match angle |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) > Institute for Materials Research (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Civil Engineering (Leeds) > Inst for Pathogen Control Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 03 Apr 2014 11:16 |
Last Modified: | 23 Jun 2023 21:38 |
Published Version: | http://dx.doi.org/10.1016/j.compfluid.2013.08.006 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.compfluid.2013.08.006 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:78337 |