Akanyeti, O., Nehmzow, U. and Billings, S.A. (2008) Robot training using system identification. Research Report. ACSE Research Report no. 967 . Automatic Control and Systems Engineering, University of Sheffield
Abstract
This paper focuses on developing a formal, theory-based design methodology to generate transparent robot control programs using mathematical functions. The research finds its theoretical roots in robot training and system identification techniques such as Armax (Auto-Regressive Moving Average models with eXogenous inputs) and Narmax (Non-linear Armax). These techniques produce linear and non-linear polynomial functions that model the relationship between a robot’s sensor perception and motor response. The main benefits of the proposed design methodology, compared to the traditional robot programming techniques are: (i) It is a fast and efficient way of generating robot control code, (ii) The generated robot control programs are transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour, and (iii) It requires very little explicit knowledge of robot programming where end-users/programmers who do not have any specialised robot programming skills can nevertheless generate task-achieving sensor-motor couplings. The nature of this research is concerned with obtaining sensor-motor couplings, be it through human demonstration via the robot, direct human demonstration, or other means. The viability of our methodology has been demonstrated by teaching various mobile robots different sensor-motor tasks such as wall following, corridor passing, door traversal and route learning.
Metadata
Item Type: | Monograph |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | The Department of Automatic Control and Systems Engineering research reports offer a forum for the research output of the academic staff and research students of the Department at the University of Sheffield. Papers are reviewed for quality and presentation by a departmental editor. However, the contents and opinions expressed remain the responsibility of the authors. Some papers in the series may have been subsequently published elsewhere and you are advised to cite the later published version in these instances. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) > ACSE Research Reports |
Depositing User: | Miss Anthea Tucker |
Date Deposited: | 12 Oct 2012 13:22 |
Last Modified: | 28 Jun 2014 18:57 |
Status: | Published |
Publisher: | Automatic Control and Systems Engineering, University of Sheffield |
Series Name: | ACSE Research Report no. 967 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:74624 |