Pan, Y., Billings, S.A. and Zhao, Y. (2007) The identification of coupled map lattice models for autonomous cellular neural network patterns. Research Report. ACSE Research Report no. 949 . Automatic Control and Systems Engineering, University of Sheffield
Abstract
The identification problem for spatiotemporal patterns which are generated by autonomous Cellular Neural Networks (CNN) is investigated in this paper. The application of traditional identification algorithms to these special spatiotemporal systems can produce poor models due to the inherent piecewise nonlinear structure of CNN. To solve this problem, a new type of Coupled Map Lattice model with output constraints and corresponding identification algorithms are proposed in the present study. Numerical examples show that the identified CML models have good prediction capabilities even over the long term and the main dynamics of the original patterns appears to be well represented.
Metadata
Item Type: | Monograph |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | The Department of Automatic Control and Systems Engineering research reports offer a forum for the research output of the academic staff and research students of the Department at the University of Sheffield. Papers are reviewed for quality and presentation by a departmental editor. However, the contents and opinions expressed remain the responsibility of the authors. Some papers in the series may have been subsequently published elsewhere and you are advised to cite the later published version in these instances. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) > ACSE Research Reports |
Depositing User: | Miss Anthea Tucker |
Date Deposited: | 11 Oct 2012 14:47 |
Last Modified: | 05 Jun 2014 05:22 |
Status: | Published |
Publisher: | Automatic Control and Systems Engineering, University of Sheffield |
Series Name: | ACSE Research Report no. 949 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:74608 |