Hodge, V.J., O’Keefe, S. and Austin, J. (2006) A binary neural decision table classifier. Neurocomputing, 69 (16-18). pp. 1850-1859. ISSN 0925-2312
Abstract
In this paper, we introduce a neural network-based decision table algorithm. We focus on the implementation details of the decision table algorithm when it is constructed using the neural network. Decision tables are simple supervised classifiers which, Kohavi demonstrated, can outperform state-of-the-art classifiers such as C4.5. We couple this power with the efficiency and flexibility of a binary associative-memory neural network. Initially, we demonstrate how the binary associative-memory neural network can form the decision table index to map between attribute values and data records and subsequently we show how two attribute selection algorithms can be used to pre-select attributes for this decision table. The attribute selection algorithms are easily implemented within the same binary associative-memory framework producing a tightly coupled, two-tier system allowing attribute selection and decision table indexing. The first attribute selector uses mutual information between attributes and classes to select the attributes that classify best. The second attribute selector uses a probabilistic approach to evaluate randomly selected attribute subsets.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Computer Science (York) |
Depositing User: | York RAE Import |
Date Deposited: | 19 Mar 2009 14:49 |
Last Modified: | 19 Mar 2009 14:49 |
Published Version: | http://dx.doi.org/10.1016/j.neucom.2005.11.012 |
Status: | Published |
Publisher: | Elsevier Science B.V. |
Refereed: | Yes |
Identification Number: | 10.1016/j.neucom.2005.11.012 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:7080 |