Hodge, V.J. orcid.org/0000-0002-2469-0224 and Austin, J. orcid.org/0000-0001-5762-8614 (2001) Hierarchical growing cell structures: TreeGCS. IEEE Transactions on Knowledge and Data Engineering. pp. 207-218.
Abstract
We propose a hierarchical clustering algorithm (TreeGCS) based upon the Growing Cell Structure (GCS) neural network of Fritzke. Our algorithm refines and builds upon the GCS base, overcoming an inconsistency in the original GCS algorithm, where the network topology is susceptible to the ordering of the input vectors. Our algorithm is unsupervised, flexible, and dynamic and we have imposed no additional parameters on the underlying GCS algorithm. Our ultimate aim is a hierarchical clustering neural network that is both consistent and stable and identifies the innate hierarchical structure present in vector-based data. We demonstrate improved stability of the GCS foundation and evaluate our algorithm against the hierarchy generated by an ascendant hierarchical clustering dendogram. Our approach emulates the hierarchical clustering of the dendogram. It demonstrates the importance of the parameter settings for GCS and how they affect the stability of the clustering.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | Copyright © 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Computer Science (York) |
Depositing User: | Sherpa Assistant |
Date Deposited: | 30 Sep 2005 |
Last Modified: | 26 Jan 2025 00:07 |
Published Version: | https://doi.org/10.1109/69.917561 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1109/69.917561 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:688 |