Fewster, C.J. and Pfenning, M.J. (2003) A quantum weak energy inequality for spin-one fields in curved space–time. Journal of Mathematical Physics, 44 (10). pp. 4480-4513. ISSN 0022-2488
Abstract
Quantum weak energy inequalities (QWEI) provide state-independent lower bounds on averages of the renormalized energy density of a quantum field. We derive QWEIs for the electromagnetic and massive spin-one fields in globally hyperbolic space–times whose Cauchy surfaces are compact and have trivial first homology group. These inequalities provide lower bounds on weighted averages of the renormalized energy density as "measured" along an arbitrary timelike trajectory, and are valid for arbitrary Hadamard states of the spin-one fields. The QWEI bound takes a particularly simple form for averaging along static trajectories in ultrastatic space–times; as specific examples we consider Minkowski space (in which case the topological restrictions may be dispensed with) and the static Einstein universe. A significant part of the paper is devoted to the definition and properties of Hadamard states of spin-one fields in curved space–times, particularly with regard to their microlocal behavior.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Mathematics (York) |
Depositing User: | York RAE Import |
Date Deposited: | 21 Apr 2009 12:26 |
Last Modified: | 21 Apr 2009 12:26 |
Published Version: | http://dx.doi.org/10.1063/1.1602554 |
Status: | Published |
Publisher: | American Institute of Physics |
Identification Number: | 10.1063/1.1602554 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:6775 |