Arber, T.D. and Vann, R.G.L. (2002) A critical comparison of Eulerian-grid-based Vlasov solvers. Journal of Computational Physics, 180 (1). pp. 339-357. ISSN 0021-9991
Abstract
A common problem with direct Vlasov solvers is ensuring that the distribution function remains positive. A related problem is to guarantee that the numerical scheme does not introduce false oscillations in velocity space. In this paper we use a variety of schemes to assess the importance of these issues and to determine an optimal strategy for Eulerian split approaches to Vlasov solvers. From these tests we conclude that maintaining positivity is less important than correctly dissipating the fine-scale structure which arises naturally in the solution to many Vlasov problems. Furthermore we show that there are distinct advantages to using high-order schemes, i.e., third order rather than second. A natural choice which satisfies all of these requirements is the piecewise parabolic method (PPM), which is applied here to Vlasov's equation for the first time.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Physics (York) |
Depositing User: | York RAE Import |
Date Deposited: | 23 Apr 2009 09:12 |
Last Modified: | 23 Apr 2009 09:12 |
Published Version: | http://dx.doi.org/10.1006/jcph.2002.7098 |
Status: | Published |
Publisher: | Elsevier Science B.V. |
Identification Number: | 10.1006/jcph.2002.7098 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:6613 |