Baez-Monroy, V.O. and O’Keefe, S. (2005) Principles of employing a self-organizing map as a frequent itemset miner. In: Artificial Neural Networks: Biological Inspirations. Porceedings of ICANN 2005. ICANN 2005: 15th International Conference, September 11-15, 2005, Warsaw, Poland. Lecture Notes in Computer Science, Part I (3696). Springer-verlag , Berlin / Heidelberg , pp. 363-370. ISBN 978-3-540-28752-0
Abstract
This work proposes a theoretical guideline in the specific area of Frequent Itemset Mining (FIM). It supports the hypothesis that the use of neural network technology for the problem of Association Rule Mining (ARM) is feasible, especially for the task of generating frequent itemsets and its variants (e.g. Maximal and closed). We define some characteristics which any neural network must have if we would want to employ it for the task of FIM. Principally, we interpret the results of experimenting with a Self-Organizing Map (SOM) for this specific data mining technique.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Computer Science (York) |
Depositing User: | York RAE Import |
Date Deposited: | 08 Apr 2009 16:15 |
Last Modified: | 08 Apr 2009 16:15 |
Published Version: | http://dx.doi.org/10.1007/11550822_57 |
Status: | Published |
Publisher: | Springer-verlag |
Series Name: | Lecture Notes in Computer Science |
Identification Number: | 10.1007/11550822_57 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:5657 |