Jimack, P.K. and Romanazzi, G. (2008) Parallel performance prediction for numerical codes in a multi-cluster environment. In: Proceedings of the International Multiconference on Computer Science and Information Technology. International Multiconference on Computer Science and Information Technology : 4th Workshop on Large Scale Computations on Grids, October 20–22, 2008, Wisła, Poland. IEEE , pp. 467-474. ISBN 978-83-60810-14-9
Abstract
We propose a model for describing and predicting the performance of parallel numerical software on distributed memory architectures within a multi-cluster environment. The goal of the model is to allow reliable predictions to be made as to the execution time of a given code on a large number of processors of a given parallel system, and on a combination of systems, by only benchmarking the code on small numbers of processors. Thishas potential applications for the scheduling of jobs in a Grid computing environment where informed decisions about which resources to use in order to maximize the performance and/or minimize the cost of a job will be valuable. The methodology is built and tested for a particular class of numerical code, based upon the multilevel solution of discretized partial differential equations, and despite its simplicity it is demonstrated to be extremely accurate and robust with respect to both the processor and communications architectures considered. Furthermore,results are also presented which demonstrate that excellent predictions may also be obtained for numerical algorithms that are more general than the pure multigrid solver used to motivate the methodology. These are based upon the use of a practical parallel engineering code that is briefly described. The potential significance of this work is illustrated via two scenarios which consider a Grid user who wishes to use the available resources either (i) to obtain a particular result as quickly as possible, or (ii) to obtain results to different levels of accuracy. Index Terms—Parallel Distributed Algorithms; Grid Computing; Cluster Computing; Performance Evaluation and Prediction; Meta-Scheduling.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds) |
Depositing User: | Mrs Yasmin Aziz |
Date Deposited: | 18 Nov 2008 12:43 |
Last Modified: | 25 Oct 2016 21:13 |
Published Version: | http://www.proceedings2008.imcsit.org/pliks/38.pdf |
Status: | Published |
Publisher: | IEEE |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:4921 |