Lu, P. orcid.org/0000-0002-0199-3783, Bai, W., Rueckert, D. et al. (1 more author) (2021) Multiscale Graph Convolutional Networks for Cardiac Motion Analysis. In: Functional Imaging and Modeling of the Heart (FIMH 2021). 11th International Conference, FIMH 2021, 21-25 Jun 2021, Stanford, CA, USA. Lecture Notes in Computer Science, 12738. Springer Nature, Cham, Switzerland, pp. 264-272. ISBN: 9783030787097. ISSN: 0302-9743. EISSN: 1611-3349.
Abstract
We propose a multiscale spatio-temporal graph convolutional network (MST-GCN) approach to learn the left ventricular (LV) motion patterns from cardiac MR image sequences. The MST-GCN follows an encoder-decoder framework. The encoder uses a sequence of multiscale graph computation units (MGCUs). The myocardial geometry is represented as a graph. The network models the internal relations of the graph nodes via feature extraction at different scales and fuses the feature across scales to form a global representation of the input cardiac motion. Based on this, the decoder employs a graph-based gated recurrent unit (G-GRU) to predict future cardiac motion. We show that the MST-GCN can automatically quantify the spatio-temporal patterns in cardiac MR that characterise cardiac motion. Experiments are performed on mid-ventricular short-axis view cardiac MR image sequence from the UK Biobank dataset. We compare the performance of cardiac motion prediction of the proposed method with ten different architectures and parameter settings. Experiments show that the proposed method inputting node positions and node velocities with multiscale graphs achieves the best performance with a mean squared error of 0.25 pixel between the ground truth node locations and our prediction. We also show that the proposed method can estimate a number of motion-related metrics, including endocardial radii, thickness and strain which are useful for regional LV function assessment.
Metadata
| Item Type: | Proceedings Paper |
|---|---|
| Authors/Creators: |
|
| Keywords: | Spatio-temporal graph convolutional networks; Cardiac MR; Motion analysis |
| Dates: |
|
| Institution: | The University of Leeds |
| Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds) |
| Date Deposited: | 27 Jan 2026 11:56 |
| Last Modified: | 27 Jan 2026 16:28 |
| Published Version: | https://link.springer.com/chapter/10.1007/978-3-03... |
| Status: | Published |
| Publisher: | Springer Nature |
| Series Name: | Lecture Notes in Computer Science |
| Identification Number: | 10.1007/978-3-030-78710-3_26 |
| Related URLs: | |
| Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:236617 |

CORE (COnnecting REpositories)
CORE (COnnecting REpositories)