Stankovic, D. orcid.org/0000-0002-4203-9515, Davidson, J.R. orcid.org/0000-0001-6528-7899, Ott, V. orcid.org/0000-0002-2493-9966 et al. (2 more authors) (2024) Experimental and numerical investigations on the tensile response of pin-loaded carbon fibre reinforced polymer straps. Composites Science and Technology, 258. 110915. ISSN: 0266-3538
Abstract
Carbon fibre reinforced polymer (CFRP) pin-loaded looped straps are increasingly being used in a range of structural load-bearing applications, notably for bridge hanger cables in network arch rail and highway bridges. The static performance of such CFRP straps is investigated through experimental and numerical analyses. Finite element (FE) models based on both one-eighth and half pin-strap assembly geometries were modelled. The resulting strains, stresses, and applied loads were compared against experimental data obtained using Digital Image Correlation, Distributed Fibre Optic Sensing (DFOS), and Fibre Bragg Grating (FBG) Sensing. The FE models effectively captured local strain distributions around the vertex area, close to the pin ends of the straps, as well as in the mid-shaft region, and aligned reasonably with experimental observations. The half FE model accurately predicted the overall strain distribution when compared to DFOS data; however, higher strain magnitudes (by 0.45–10.2 %) and larger strain reductions were observed in some locations. Regarding failure loads, the FE models agreed well with Schürmann's analytical solution and the maximum stress criterion, exhibiting less than 2.5 % deviations from the experimental data. Furthermore, the predicted onset of strap failure (by delamination) in the half model agreed with experimental values, with a maximum variance of 9.2 %.
Metadata
| Item Type: | Article | 
|---|---|
| Authors/Creators: | 
 | 
| Copyright, Publisher and Additional Information: | © 2024 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | 
| Keywords: | Optical fibres; Carbon fibres; Failure criterion; Finite element analysis (FEA); Elastic properties | 
| Dates: | 
 | 
| Institution: | The University of Sheffield | 
| Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) | 
| Date Deposited: | 24 Oct 2025 14:14 | 
| Last Modified: | 24 Oct 2025 14:14 | 
| Status: | Published | 
| Publisher: | Elsevier BV | 
| Refereed: | Yes | 
| Identification Number: | 10.1016/j.compscitech.2024.110915 | 
| Related URLs: | |
| Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:233532 | 

![1-s2.0-S0266353824004858-main.pdf [thumbnail of 1-s2.0-S0266353824004858-main.pdf]](https://eprints.whiterose.ac.uk/style/images/fileicons/text.png)
 CORE (COnnecting REpositories)
 CORE (COnnecting REpositories) CORE (COnnecting REpositories)
 CORE (COnnecting REpositories)