Zhao, Z. orcid.org/0000-0002-3060-269X and Aletras, N. orcid.org/0000-0003-4285-1965 (2024) Comparing explanation faithfulness between multilingual and monolingual fine-tuned language models. In: Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). The 2024 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024), 16-21 Jun 2024, Mexico City, Mexico. Association for Computational Linguistics, pp. 3226-3244. ISBN: 9798891761148.
Abstract
In many real natural language processing application scenarios, practitioners not only aim to maximize predictive performance but also seek faithful explanations for the model predictions. Rationales and importance distribution given by feature attribution methods (FAs) provide insights into how different parts of the input contribute to a prediction. Previous studies have explored how different factors affect faithfulness, mainly in the context of monolingual English models. On the other hand, the differences in FA faithfulness between multilingual and monolingual models have yet to be explored. Our extensive experiments, covering five languages and five popular FAs, show that FA faithfulness varies between multilingual and monolingual models. We find that the larger the multilingual model, the less faithful the FAs are compared to its counterpart monolingual models. Our further analysis shows that the faithfulness disparity is potentially driven by the differences between model tokenizers. Our code is available: https://github.com/casszhao/multilingual-faith.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 ACL. Licensed on a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 12 Sep 2025 11:42 |
Last Modified: | 12 Sep 2025 11:45 |
Status: | Published |
Publisher: | Association for Computational Linguistics |
Refereed: | Yes |
Identification Number: | 10.18653/v1/2024.naacl-long.178 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:231510 |