Hancock, L.P., Allwood, E.G., Palmer, J.S. et al. (2 more authors) (2025) Agent-based modelling of the early stages of actin polymerisation required to drive endocytosis in Saccharomyces cerevisiae. Scientific Reports, 15 (1). 28951. ISSN: 2045-2322
Abstract
Endocytosis is critical. Its complexity means that many aspects remain poorly understood. We have developed an agent-based model covering key components of actin filament generation in endocytosis in Saccharomyces cerevisiae. The model incorporates realistic values for rates, affinities, concentrations, and mobilities, and reproduces essential features of endocytosis, from the arrival of WASp/Las17 and its inhibitor Sla1 at the membrane up to the burst of actin polymerisation. The model yields relative rates and affinities for interactions that cannot be measured experimentally, and places limitations on plausible scenarios. Specifically, it reveals three novel findings. First, Las17 must form multimeric complexes. Second, de novo F-actin nucleation occurs in two stages, involving the slow formation of linear trimers, followed by rapid polymerisation once an additional actin monomer is positioned at the side of the aligned monomers. Third, competition between SH3 domains and other factors, including actin, is critical to ensure on/off switching. This requires: (1) tandem domains binding to adjacent polyproline sites outcompeting single domains; (2) these tandem domains being weakened in overall affinity through a reduction in avidity by competition with single SH3 domains. We conclude with a pathway that proposes how controlled actin polymerisation occurs, and raises implications for further testing.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Endocytosis; Actin nucleation; Agent-based model; Yeast; SH3 domain; Computational models; Endocytosis |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Biosciences (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 12 Aug 2025 07:37 |
Last Modified: | 12 Aug 2025 07:37 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-025-14248-w |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:230304 |