Azari, F., Robertson, A.M., Tobe, Y. et al. (6 more authors) (2025) Elucidating the high compliance mechanism by which the urinary bladder fills under low pressures. Scientific Reports, 15 (1). 25356. ISSN 2045-2322
Abstract
The high compliance of the urinary bladder during filling is essential for its proper function, enabling it to accommodate significant volumetric increases with minimal rise in transmural pressure. This study aimed to elucidate the physical mechanisms underlying this phenomenon by analyzing the ex vivo filling process in rat from a fully voided state to complete distension, without preconditioning, using three complementary imaging modalities. High-resolution micro-CT at 10.8 μm resolution was used to generate detailed 3D reconstructions of the bladder lumen, revealing an average 62-fold increase in bladder volume during filling. Pressure-volume studies of whole bladder delineated three mechanical filling regimes: an initial high-compliance phase, a transitional phase, and a final high-pressure phase. While prior studies conjectured small mucosal rugae (∼450 μm) are responsible for the high compliance phase, multiphoton microscopy (MPM) of the dome of the voided bladder revealed large folds in voided bladders an order of magnitude larger than these rugae. Bladder imaging during the inflation process demonstrated flattening of these large scale folds in the initial high compliance phase. The 3D reconstructions of the bladder lumen in the filled and voided state revealed a high voiding efficiency of 97.13% ± 2.42%. The MPM imaging results suggest the large scale folds in the dome enable this high voiding fraction by driving urine toward the bladder outlet. These insights are vital for developing realistic computational models of bladder micturition and understanding changes to bladder function due to pathological conditions such as bladder outlet obstruction and age-related dysfunction.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2025. Open Access: This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
Keywords: | Compliance; Urinary bladder wall; Micro-CT; Multiphoton (MPM) imaging; Inflation testing |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 21 Jul 2025 13:51 |
Last Modified: | 21 Jul 2025 13:51 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-025-07479-4 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:229451 |