Lu, H.Y., Lu, P. orcid.org/0000-0002-0199-3783, Hirst, J.E. et al. (2 more authors) (2023) A Stacked Long Short-Term Memory Approach for Predictive Blood Glucose Monitoring in Women with Gestational Diabetes Mellitus. Sensors, 23 (18). 7990. ISSN 1424-8220
Abstract
Gestational diabetes mellitus (GDM) is a subtype of diabetes that develops during pregnancy. Managing blood glucose (BG) within the healthy physiological range can reduce clinical complications for women with gestational diabetes. The objectives of this study are to (1) develop benchmark glucose prediction models with long short-term memory (LSTM) recurrent neural network models using time-series data collected from the GDm-Health platform, (2) compare the prediction accuracy with published results, and (3) suggest an optimized clinical review schedule with the potential to reduce the overall number of blood tests for mothers with stable and within-range glucose measurements. A total of 190,396 BG readings from 1110 patients were used for model development, validation and testing under three different prediction schemes: 7 days of BG readings to predict the next 7 or 14 days and 14 days to predict 14 days. Our results show that the optimized BG schedule based on a 7-day observational window to predict the BG of the next 14 days achieved the accuracies of the root mean square error (RMSE) = 0.958 ± 0.007, 0.876 ± 0.003, 0.898 ± 0.003, 0.622 ± 0.003, 0.814 ± 0.009 and 0.845 ± 0.005 for the after-breakfast, after-lunch, after-dinner, before-breakfast, before-lunch and before-dinner predictions, respectively. This is the first machine learning study that suggested an optimized blood glucose monitoring frequency, which is 7 days to monitor the next 14 days based on the accuracy of blood glucose prediction. Moreover, the accuracy of our proposed model based on the fingerstick blood glucose test is on par with the prediction accuracies compared with the benchmark performance of one-hour prediction models using continuous glucose monitoring (CGM) readings. In conclusion, the stacked LSTM model is a promising approach for capturing the patterns in time-series data, resulting in accurate predictions of BG levels. Using a deep learning model with routine fingerstick glucose collection is a promising, predictable and low-cost solution for BG monitoring for women with gestational diabetes.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 by the authors. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | patient monitoring; gestational diabetes; clinical machine learning; pregnancy care; medical informatics |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 04 Jul 2025 15:31 |
Last Modified: | 04 Jul 2025 15:31 |
Status: | Published |
Publisher: | MDPI |
Identification Number: | 10.3390/s23187990 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:228686 |