Bergner, N., Heutte, B., Beck, I. et al. (25 more authors) (2025) Characteristics and effects of aerosols during blowing snow events in the central Arctic. Elementa: Science of the Anthropocene, 13 (1). 00047. ISSN 2785-4558
Abstract
Sea salt aerosol (SSaer) significantly impacts aerosol-radiation and aerosol-cloud interactions, and sublimated blowing snow is hypothesized to be an important SSaer source in polar regions. Understanding blowing snow and other wind-sourced aerosols’ climate relevant properties is needed, especially during winter when Arctic amplification is greatest. However, most of our understanding of blowing snow SSaer comes from modeling studies, and direct observations are sparse. Additionally, SSaer can originate from multiple sources, making it difficult to disentangle emission processes. Here, we present comprehensive observations of wind-sourced aerosol during blowing snow events from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic. High wind speed strongly enhances total aerosol number, submicron sodium chloride mass, cloud condensation nuclei concentrations, and scattering coefficients. Generally, the relative response of aerosol properties to wind speed enhancement is strongest in fall when Arctic aerosol concentrations are lowest. Blowing snow events showed similar aerosol and environmental properties across events, apart from occasions with high snow age (>6 days since last snowfall). Coarse-mode number concentrations (>1 mm) are better explained by variability in wind speed averaged over 12-h air mass back trajectories arriving at the MOSAiC site compared to local, instantaneous wind speed, suggesting the importance of regional transport and consideration of air mass history for wind-driven aerosol production.These MOSAiC observations provide new insights into wind-driven aerosol in the central Arctic and may help validate modeling studies and improve model parameterizations particularly for aerosol direct and indirect radiative forcing.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2025 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Arctic, Atmosphere, Wind-sourced aerosol, Blowing snow, MOSAiC |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 May 2025 16:40 |
Last Modified: | 14 May 2025 16:40 |
Status: | Published |
Publisher: | University of California Press |
Identification Number: | 10.1525/elementa.2024.00047 |
Related URLs: | |
Sustainable Development Goals: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:226552 |
Download
Filename: elementa.2024.00047.pdf
Licence: CC-BY 4.0
External copy
Related datasets
- Dataset
- Dataset
- Dataset
- https://doi.org/10.1594/PANGAEA.961009
- https://doi.org/10.5439/1323894
- https://doi.org/10.5439/1804484
- Dataset
- Dataset
- Dataset
- Dataset
- Dataset
- https://doi.org/10.18739/A2PV6B83F
- Dataset
- https://doi.org/10.5285/7d8e401b-2c75-4ee4-a753-c24b7e91e6e9
- Dataset
- Dataset
- Dataset
- https://doi.org/10.5439/1497398