Roadmap on Machine learning in electronic structure

Kulik, H. J., Hammerschmidt, T., Schmidt, J. et al. (44 more authors) (2022) Roadmap on Machine learning in electronic structure. Electronic Structure. 023004. ISSN 2516-1075

Abstract

Metadata

Item Type: Article
Authors/Creators:
  • Kulik, H. J.
  • Hammerschmidt, T.
  • Schmidt, J.
  • Botti, S.
  • Marques, M. A.L.
  • Boley, M.
  • Scheffler, M.
  • Todorović, M.
  • Rinke, P.
  • Oses, C.
  • Smolyanyuk, A.
  • Curtarolo, S.
  • Tkatchenko, A.
  • Bartók, A. P.
  • Manzhos, S.
  • Ihara, M.
  • Carrington, T.
  • Behler, J.
  • Isayev, O.
  • Veit, M. ORCID logo https://orcid.org/0000-0001-7813-4015
  • Grisafi, A.
  • Nigam, J.
  • Ceriotti, M.
  • Schütt, K. T.
  • Westermayr, J.
  • Gastegger, M.
  • Maurer, R. J.
  • Kalita, B.
  • Burke, K.
  • Nagai, R.
  • Akashi, R.
  • Sugino, O.
  • Hermann, J.
  • Noé, F.
  • Pilati, S.
  • Draxl, C.
  • Kuban, M.
  • Rigamonti, S.
  • Scheidgen, M.
  • Esters, M.
  • Hicks, D.
  • Toher, C.
  • Balachandran, P. V.
  • Tamblyn, I.
  • Whitelam, S.
  • Bellinger, C.
  • Ghiringhelli, L. M.
Copyright, Publisher and Additional Information:

Publisher Copyright: © 2022 The Author(s). Published by IOP Publishing Ltd.

Keywords: computational materials science,density-functional theory,electronic structure,machine learning
Dates:
  • Accepted: 21 February 2022
  • Published: 19 August 2022
Institution: The University of York
Academic Units: The University of York > Faculty of Sciences (York) > Chemistry (York)
Depositing User: Pure (York)
Date Deposited: 01 May 2025 14:20
Last Modified: 01 May 2025 14:20
Published Version: https://doi.org/10.1088/2516-1075/ac572f
Status: Published
Refereed: Yes
Identification Number: 10.1088/2516-1075/ac572f
Related URLs:
Open Archives Initiative ID (OAI ID):

Download

Filename: Kulik_2022_Electron._Struct._4_023004.pdf

Description: Roadmap on Machine learning in electronic structure

Licence: CC-BY 2.5

Export

Statistics