Stewart, G. orcid.org/0000-0001-7397-2132, Tazzyman, S., Sun, Y. et al. (9 more authors) (2025) An oncolytic adenovirus targeting SLAMF7 demonstrates anti-myeloma efficacy. Leukemia. ISSN 0887-6924
Abstract
We investigated a novel SLAMF7-promoter driven oncolytic adenovirus (Ad[CE1A]) as a potential therapeutic for multiple myeloma, an incurable hematological malignancy. Ad[CE1A] infection, replication, and oncolysis were assessed in a panel of myeloma cell lines (n = 8) and ex vivo samples from myeloma patients (n = 17) and healthy donors (HDs) (n = 14). Ad[CE1A] efficiently infected, replicated, and induced oncolysis in myeloma cells, but not in control cell lines or HDs, demonstrating selective cytotoxicity. Mechanistic studies revealed Ad[CE1A]-induced cell death is caspase-independent, with a potential involvement of necroptosis. Ad[CE1A] also altered immunogenic cell death markers (calreticulin, CD47, extracellular ATP), enhanced antigen presentation via increased MHC class I and II receptor expression (HLA-ABC and HLA-DR), and stimulated bystander cytokine killing, indicating potential for direct and immune-mediated anti-myeloma responses. In vivo experiments with 5TGM1 syngeneic and U266 xenograft models showed Ad[CE1A] significantly reduced myeloma tumor burden compared to vehicle control. Combination therapy with anti-myeloma drugs, bortezomib, melphalan, panobinostat and pomalidomide, enhanced Ad[CE1A] efficacy, with melphalan upregulating SLAMF7, resulting in increased viral replication. In summary, these findings support Ad[CE1A] as a promising myeloma therapy.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2025. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Cancer models; Targeted therapies |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Medicine and Population Health |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 22 Apr 2025 12:50 |
Last Modified: | 22 Apr 2025 12:50 |
Status: | Published online |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41375-025-02617-3 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:225648 |