Ntostis, P., Swanson, G., Kokkali, G. et al. (8 more authors) (2023) Trophectoderm non-coding RNAs reflect the higher metabolic and more invasive properties of young maternal age blastocysts. Systems Biology in Reproductive Medicine, 69 (1). pp. 3-19. ISSN 1939-6368
Abstract
Increasing female age is accompanied by a corresponding fall in her fertility. This decline is influenced by a variety of factors over an individual’s life course including background genetics, local environment and diet. Studying both coding and non-coding RNAs of the embryo could aid our understanding of the causes and/or effects of the physiological processes accompanying the decline including the differential expression of sub-cellular biomarkers indicative of various diseases. The current study is a post-hoc analysis of the expression of trophectoderm RNA data derived from a previous high throughput study. Its main aim is to determine the characteristics and potential functionalities that characterize long non-coding RNAs. As reported previously, a maternal age-related component is potentially implicated in implantation success. Trophectoderm samples representing the full range of maternal reproductive ages were considered in relation to embryonic implantation potential, trophectoderm transcriptome dynamics and reproductive maternal age. The long non-coding RNA (lncRNA) biomarkers identified here are consistent with the activities of embryo-endometrial crosstalk, developmental competency and implantation and share common characteristics with markers of neoplasia/cancer invasion. Corresponding genes for expressed lncRNAs were more active in the blastocysts of younger women are associated with metabolic pathways including cholesterol biosynthesis and steroidogenesis.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Gene expression; RNA sequencing; trophectoderm; long non-coding RNA; maternal age; blastocyst |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM) > Discovery & Translational Science Dept (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Apr 2025 10:32 |
Last Modified: | 14 Apr 2025 10:32 |
Status: | Published |
Publisher: | Taylor & Francis |
Identification Number: | 10.1080/19396368.2022.2153636 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:225454 |