Zubrytė, R., Mavliutova, L., García, Y. et al. (8 more authors) (2025) Development of molecularly imprinted polymers for the detection of human chorionic gonadotropin. Scientific Reports, 15 (1). 10436. ISSN 2045-2322
Abstract
Diagnostic pregnancy tests are the most widely used immunoassays for home-based use. These tests employ the well-established lateral flow assay (LFA) technique, reminiscent of affinity chromatography relying on the dual action of two orthogonal anti-hCG antibodies. Immunoassays suffer from several drawbacks, including challenges in antibody manufacturing, suboptimal accuracy, and sensitivity to adverse storing conditions. Additionally, LFAs are typically designed for single use, as the LFA technique is non-reusable. An alternative to overcome these drawbacks is to leverage molecularly imprinted polymer (MIP) technology to generate polymer-based hCG-receptors and, subsequently, non-bioreceptor-based tests. Here, we report the development of MIP nanogels for hCG detection, exploiting epitopes and magnetic templates for high-yielding dispersed phase imprinting. The resulting nanogels were designed for orthogonal targeting of two immunogenic epitopes (SV and PQ) and were thoroughly characterized with respect to physical properties, binding affinity, specificity, and sensitivity. Molecular dynamics simulations indicated a pronounced conformational overlap between the templates and the epitopes in the native protein, supporting their suitability for templating cavities for hCG recognition. Quartz crystal microbalance (QCM)-based binding tests and kinetic interaction analysis by surface plasmon resonance (SPR) revealed nanomolar dissociation constants for the MIP nanogels and their corresponding template peptides and low uptake of lutenizing hormone (LH), structurally resembling to hCG. Receptor reusability was demonstrated in the multicycle SPR sensing mode using a low pH regeneration buffer. The results suggest the feasibility of using imprinted nanogels as a class of cost-effective, stable alternatives to natural antibodies for hCG detection. We foresee applications of these binders with respect to reusable pregnancy tests and other hCG-related disease diagnostics.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2025. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Chorionic Gonadotropin; Humans; Molecularly Imprinted Polymers; Molecular Imprinting; Molecular Dynamics Simulation; Epitopes; Female; Quartz Crystal Microbalance Techniques; Immunoassay; Pregnancy; Nanogels |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematical and Physical Sciences |
Funding Information: | Funder Grant number ENGINEERING AND PHYSICAL SCIENCE RESEARCH COUNCIL EP/V056085/2 Engineering and Physical Sciences Research Council EP/V056085/2 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 31 Mar 2025 13:36 |
Last Modified: | 31 Mar 2025 13:36 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-025-94289-3 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:225031 |