Merino, C., Moffatt, I. and Noble, S. orcid.org/0000-0002-1621-0059 (2025) An Activities Expansion of the Transition Polynomial of a Multimatroid. SIAM Journal on Discrete Mathematics, 39 (2). 1372 -1407. ISSN: 0895-4801
Abstract
The weighted transition polynomial of a multimatroid is a generalization of the Tutte polynomial. By defining the activity of a skew class with respect to a basis in a multimatroid, we obtain an activities expansion for the weighted transition polynomial. We also decompose the set of all transversals of a multimatroid as a union of subsets of transversals. Each term in the decomposition has the structure of a boolean lattice, and each transversal belongs to a number of terms depending only on the sizes of some of its skew classes. Further expressions for the transition polynomial of a multimatroid are obtained via an equivalence relation on its bases and by extending Kochol’s theory of compatible sets. We apply our multimatroid results to obtain a result of Morse about the transition polynomial of a delta-matroid and get a partition of the boolean lattice of subsets of elements of a delta-matroid determined by the feasible sets. Finally, we describe how multimatroids arise from graphs embedded in surfaces and apply our results to obtain an activities expansion for the topological transition polynomial. Our work extends results for the Tutte polynomial of a matroid.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | This is an author produced version of an article published in SIAM Journal on Discrete Mathematics, made available under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | activities expansion, delta-matroid, multimatroid, ribbon graph, transition poly-nomial, Tutte polynomial |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Computing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Mar 2025 10:57 |
Last Modified: | 30 Jul 2025 14:24 |
Status: | Published |
Publisher: | Society for Industrial and Applied Mathematics |
Identification Number: | 10.1137/23M1549468 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:224407 |
Download
Filename: Multimatroids__activities__partitions_and_the_transition_polynomial.pdf
Licence: CC-BY 4.0