Shah, A.A. orcid.org/0000-0003-3745-2636, Leung, P.K. and Xing, W.W. orcid.org/0000-0002-3177-8478 (2025) Rapid high-fidelity quantum simulations using multi-step nonlinear autoregression and graph embeddings. npj Computational Materials, 11 (1). 57. ISSN 2057-3960
Abstract
The design and high-throughput screening of materials using machine-learning assisted quantum-mechanical simulations typically requires the existence of a very large data set, often generated from simulations at a high level of theory or fidelity. A single simulation at high fidelity can take on the order of days for a complex molecule. Thus, although machine learning surrogate simulations seem promising at first glance, generation of the training data can defeat the original purpose. For this reason, the use of machine learning to screen or design materials remains elusive for many important applications. In this paper we introduce a new multi-fidelity approach based on a dual graph embedding to extract features that are placed inside a nonlinear multi-step autoregressive model. Experiments on five benchmark problems, with 14 different quantities and 27 different levels of theory, demonstrate the generalizability and high accuracy of the approach. It typically requires a few 10s to a few 1000’s of high-fidelity training points, which is several orders of magnitude lower than direct ML methods, and can be up to two orders of magnitude lower than other multi-fidelity methods. Furthermore, we develop a new benchmark data set for 860 benzoquinone molecules with up to 14 atoms, containing energy, HOMO, LUMO and dipole moment values at four levels of theory, up to coupled cluster with singles and doubles.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2025. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Chemical engineering; Computational methods |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematical and Physical Sciences |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 03 Mar 2025 16:25 |
Last Modified: | 03 Mar 2025 16:25 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41524-024-01479-0 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:223983 |