Shen, R., Qin, F., Desaules, J.-Y. orcid.org/0000-0002-3749-6375 et al. (2 more authors) (2024) Enhanced many-body quantum scars from the non-Hermitian Fock skin effect. [Preprint - arXiv]
Abstract
In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically-constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates, the non-Hermitian analogs of quantum many-body scars. A distinguishing feature of these non-Hermitian scars is their enhanced robustness against external disorders. We propose an experimental realization of the non-Hermitian scar enhancement in a tilted Bose-Hubbard optical lattice with laser-induced loss. Additionally, we implement digital simulations of such scar enhancement on the IBM quantum processor. Our results show that the Fock skin effect provides a powerful tool for creating robust non-ergodic states in generic open quantum systems.
Metadata
Item Type: | Preprint |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | This is an open access preprint under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Theoretical Physics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 21 Feb 2025 09:41 |
Last Modified: | 21 Feb 2025 09:41 |
Identification Number: | 10.48550/arxiv.2403.02395 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:223595 |