Koukoulekidis, N., Alexander, R., Hebdige, T. et al. (1 more author) (2021) The geometry of passivity for quantum systems and a novel elementary derivation of the Gibbs state. Quantum, 5. 411. ISSN 2521-327X
Abstract
Passivity is a fundamental concept that constitutes a necessary condition for any quantum system to attain thermodynamic equilibrium, and for a notion of temperature to emerge. While extensive work has been done that exploits this, the transition from passivity at a single-shot level to the completely passive Gibbs state is technically clear but lacks a good over-arching intuition. Here, we reformulate passivity for quantum systems in purely geometric terms. This description makes the emergence of the Gibbs state from passive states entirely transparent. Beyond clarifying existing results, it also provides novel analysis for non-equilibrium quantum systems. We show that, to every passive state, one can associate a simple convex shape in a 2-dimensional plane, and that the area of this shape measures the degree to which the system deviates from the manifold of equilibrium states. This provides a novel geometric measure of athermality with relations to both ergotropy and β--athermality.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Theoretical Physics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 17 Feb 2025 11:14 |
Last Modified: | 17 Feb 2025 11:14 |
Published Version: | https://quantum-journal.org/papers/q-2021-03-15-41... |
Status: | Published |
Publisher: | Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften |
Identification Number: | 10.22331/q-2021-03-15-411 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:223371 |