Feng, R.-L., Zhou, L., Besharat, M. orcid.org/0000-0001-5222-0679 et al. (5 more authors) (2024) Discrete air model for large scale rapid filling process contained entrapped air. Engineering Applications of Computational Fluid Mechanics, 18 (1). 2428423. ISSN 1994-2060
Abstract
In this paper, a discrete air model (DAM) is developed to capture the discontinuous characteristics of air at different locations during the rapid filling process in long-range, large-scale water pipeline. By introducing the continuity and momentum equations of air and combining them with the water control equation and the interface continuity equation, an improved model based on the uniform air is derived. The accuracy of the model is verified by comparing it with experimental data and the results of the original uniform air model (UAM). Subsequently, a long-range, large-scale pipeline was considered to investigate the dynamic properties of air in large systems, which had not been covered in previous studies. Additionally, the influence of air dynamic characteristics on initial air volume affected by different air lengths and various pipe diameters in large systems–is further studied. Results show that an increased pipe diameter expands the contact area of the air–water interface, often resulting in the UAM underestimating the maximum peak pressure. The propagation process of transient waves in air is divided into three stages: propagation stage with multiple variation, maximum value stage with interface propulsive, and stability stage with several fluctuations, which corresponds to the pressure fluctuation curve. This explains the occurrence of small fluctuations and peaks in the curve. Therefore, the peak pressure simulated by the proposed DAM offers a better understanding of wave behaviours.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
Keywords: | 1D numerical modelling; discrete air; air-water interface; large-scale; rapid filling |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Civil Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Feb 2025 15:56 |
Last Modified: | 14 Feb 2025 15:56 |
Status: | Published |
Publisher: | Taylor & Francis |
Identification Number: | 10.1080/19942060.2024.2428423 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:223178 |
Download
Filename: Discrete air model for large scale rapid filling process contained entrapped air.pdf
Licence: CC-BY-NC 4.0