Moreno-Tortolero, R.O. orcid.org/0000-0002-1413-3344, Michalski, J., Wells, E. et al. (6 more authors) (2024) Manipulating the water–air interface to drive protein assembly for functional silk-like fibroin fibre production. Communications Materials, 5 (1). 277. ISSN 2662-4443
Abstract
Silk’s remarkable properties arise from its hierarchical structure, formed through natural transformation from an aqueous solution to a solid fibre driven by pH and flow stress under low-energy conditions. In contrast, artificial silk fabrication typically relies on extrusion-based methods using coagulating baths and unnatural solvents, limiting true biomimetic replication. Here, we find that native-like silk fibroin forms viscoelastic films at the air-water interface. Utilizing this, we demonstrate a mild, all-aqueous method to seamlessly pull silk-like fibres with co-aligned nanofibrillar bundles. The fiber structure transitioned from hexagonally packed β-solenoid units at low pulling speeds to β-sheet-rich structures at higher speeds. Fibers pulled near physiological speeds (26.3 mm s-¹) exhibited optimal mechanical properties, with an elastic modulus of 8 ± 1 GPa and toughness of 8 ± 5 MJ m-³, comparable to natural silk. This platform also enables embedding nanoparticles and biologics, offering broad applications in sensors, biocatalysis, and tissue engineering, expanding the potential of silk-based composite materials.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Biomaterials – proteins; Self-assembly |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > School of Chemical, Materials and Biological Engineering |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 09 Jan 2025 15:56 |
Last Modified: | 10 Jan 2025 14:37 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s43246-024-00722-x |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:221268 |