Wilson, Samuel, Farren, Naomi J. orcid.org/0000-0002-5668-1648, Wilde, Shona E. et al. (6 more authors) (2024) Mobile monitoring reveals the importance of non-vehicular particulate matter sources in London. Environmental Science: Processes and Impacts. ISSN 2050-7895
Abstract
This study uses mobile monitoring to gain a better understanding of particulate matter (PM) sources in two areas of Central and Outer London, UK. We find that, unlike emissions of nitrogen oxides (NO + NO2 = NOx), which are elevated in Central London due to the high number of diesel vehicles and congestion, fine particulate matter (PM2.5) emissions are well-controlled. This finding provides evidence for the effectiveness of vehicle particulate filters, supporting the view that their widespread adoption has mitigated PM2.5 emissions, even in the highly dieselized area of Central London. However, mobile monitoring also reveals infrequent elevated PM2.5 concentrations caused by malfunctioning vehicles. These events were confirmed through simultaneous measurements of PM2.5 and sulfur dioxide (SO2), the latter being a strong tracer of engine lubricant combustion. A single event from a gasoline car, representing just 0.15% of the driving distance in Outer London, was responsible for 7.4% of the ΔPM2.5 concentration above background levels, highlighting the ongoing importance of addressing high-emission vehicles. In a novel application of mobile monitoring, we demonstrate the ability to identify and quantify non-vehicular sources of PM. Among the sources unambiguously identified are construction activities, which result in elevated concentrations of coarse particulate matter (PMcoarse = PM10 − PM2.5). The mobile measurements clearly highlight the spatial extent of the influence of such sources, which would otherwise be difficult to determine. Furthermore, these sources are shown to be weather-dependent, with PMcoarse concentrations reduced by 62.1% during wet conditions compared to dry ones.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | Publisher Copyright: © 2024 The Royal Society of Chemistry. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Chemistry (York) The University of York > Faculty of Sciences (York) > Biology (York) |
Depositing User: | Pure (York) |
Date Deposited: | 28 Nov 2024 08:30 |
Last Modified: | 23 Jan 2025 00:36 |
Published Version: | https://doi.org/10.1039/d4em00552j |
Status: | Published online |
Refereed: | Yes |
Identification Number: | 10.1039/d4em00552j |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:220208 |
Download
Filename: d4em00552j.pdf
Description: Mobile monitoring reveals the importance of nonvehicular particulate matter sources in London
Licence: CC-BY 2.5