Shamoushaki, M. orcid.org/0000-0002-4176-9639 and Koh, S.C.L. (2024) Solar cells combined with geothermal or wind power systems reduces climate and environmental impact. Communications Earth & Environment, 5 (1). 572. ISSN 2662-4435
Abstract
This research investigates the environmental sustainability of three integrated power cycles: combined geothermal-wind, combined solar-geothermal, and combined solar-wind. Here, a promising solar technology, the perovskite solar cell, is considered and analysed in conjunction with another renewable-based cycle, evaluating 17 scenarios focusing on improving the efficiency and lifespan. Among the base cases, combined solar-wind had the lowest ozone depletion impact, while combined geothermal-wind had the lowest freshwater ecotoxicity and marine ecotoxicity impacts. The study shows that extending the perovskite solar cell lifespan from 3 to 15 years reduces CO2 emissions by 28% for the combined solar-geothermal and 56% for the combined solar-wind scenario. The most sustainable cases in ozone depletion, marine ecotoxicity, freshwater ecotoxicity, and climate change impacts are combined solar-wind, combined solar-geothermal, and combined geothermal-wind, respectively, among all evaluated scenarios. This research suggests investing in the best mix of integrated power cycles using established and emerging renewable technologies for maximum environmental sustainability.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Climate-change mitigation; Environmental impact |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Social Sciences (Sheffield) > Management School (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 16 Oct 2024 13:14 |
Last Modified: | 16 Oct 2024 13:14 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s43247-024-01739-3 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:218382 |