Feng, J. orcid.org/0000-0001-5769-9682, Burke, I.T., Chen, X. et al. (1 more author) (2024) Evolution of Cu and Zn speciation in agricultural soil amended by digested sludge over time and repeated crop growth. Environmental Science and Pollution Research, 31 (45). pp. 54738-54752. ISSN 0944-1344
Abstract
Metals such as Zn and Cu present in sewage sludge applied to agricultural land can accumulate in soils and potentially mobilise into crops. Sequential extractions and X-ray absorption spectroscopy results are presented that show the speciation changes of Cu and Zn sorbed to anaerobic digestion sludge after mixing with soils over three consecutive 6-week cropping cycles, with and without spring barley (Hordeum vulgare). Cu and Zn in digested sewage sludge are primarily in metal sulphide phases formed during anaerobic digestion. When Cu and Zn spiked sludge was mixed with the soil, about 40% of Cu(I)-S phases and all Zn(II)-S phases in the amended sludge were converted to other phases (mainly Cu(I)-O and outer sphere Zn(II)-O phases). Further transformations occurred over time, and with crop growth. After 18 weeks of crop growth, about 60% of Cu added as Cu(I)-S phases was converted to other phases, with an increase in organo-Cu(II) phases. As a result, Cu and Zn extractability in the sludge-amended soil decreased with time and crop growth. Over 18 weeks, the proportions of Cu and Zn in the exchangeable fraction decreased from 36% and 70%, respectively, in freshly amended soil, to 28% and 59% without crop growth, and to 24% and 53% with crop growth. Overall, while sewage sludge application to land will probably increase the overall metal concentrations, metal bioavailability tends to reduce over time. Therefore, safety assessments for sludge application in agriculture should be based on both metal concentrations present and their specific binding strength within the amended soil.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Anaerobic digestor sludge, Agricultural soil, Evolution of metal speciation, Sequential extractions, X-ray absorption spectroscopy, Crop uptake |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Civil Engineering (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 05 Sep 2024 12:00 |
Last Modified: | 01 Oct 2024 16:33 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s11356-024-34784-8 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:216835 |