Fairclough, H.E. orcid.org/0000-0003-3133-1534 (2024) Adaptive member adding for truss topology optimization: application to elastic design. Structural and Multidisciplinary Optimization, 67 (7). 121. ISSN 1615-147X
Abstract
This paper provides a rigorous and computationally efficient means of identifying compliance-based optimal truss topologies from high-resolution ground structures—problems involving over 30 million potential elements can be solved in under 1 h on a typical laptop. The adaptive ‘member adding’ approach is shown to provide significant savings in computational time and memory usage compared to directly solving the full optimization problem, whilst obtaining the same optimal solution; this paper presents the first application of this powerful principle to the well-known linear-elastic design problem. The computational advantages are particularly notable for multiple load-case problems, as the numerical structure of these cannot be effectively exploited without understanding of the physical nature of the problem. For such cases, the member adding process reduces the computational time required from approximately O(m2) to O(m), where m is the number of potential elements; here, the time required is reduced by a factor of up to 60 for the relatively small problems that could be solved with both approaches. By using the member adding approach, compliance-optimized structures are obtained at a significantly higher resolution than has previously been possible. The findings of this paper have the potential to deliver a step change in the size of problems that can be solved in compliance-based truss topology optimization, and an accompanying Python code is provided to facilitate this.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Layout optimization; Truss topology optimization; Ground structure method; Compliance optimization; Multiple load cases |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Civil and Structural Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Jul 2024 09:23 |
Last Modified: | 30 Sep 2024 13:53 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s00158-024-03830-x |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:214806 |