Loukriz, A., Kichene, M., Bendib, A. et al. (3 more authors) (2024) Improved dynamic reconfiguration strategy for power maximization of TCT interconnected PV arrays under partial shading conditions. Electrical Engineering, 107 (1). pp. 459-470. ISSN 0948-7921
Abstract
In photovoltaic (PV) systems, partial shading is a major issue that may cause power losses, hot spots, and PV modules damage. Thus, PV array dynamic reconfiguration approaches based on irradiance equalization (IEq) between rows have been proposed to alleviate the shading effect thereby improving PV power production. However, the existing IEq-based reconfiguration techniques focus only on the minimization of row current error, without taking into consideration the voltage effect, which in turn, may result in power losses. In this regard, an improved reconfiguration strategy is proposed in the present paper to maximize the power production of a TCT interconnected PV array operating under partial shading conditions. The proposed strategy aims to achieve a PV array reconfiguration that mitigates the droop voltage issue by considering irradiance levels in both rows and columns. An in-depth investigation of a typical PV module and TCT module is provided, demonstrating that there are cases where the partial shading does not affect the PV module current but the operating voltage. In addition, an analysis highlighting the limitations of the IEq technique regarding the droop voltage issue is presented. Furthermore, mathematical development is established for deriving the objective function of the proposed strategy. The efficiency of the proposed reconfiguration strategy is assessed through experimental tests carried out on a 20 MWp PV station in Ain El-Melh, Algeria. The obtained results reveal that the proposed method overcomes the weaknesses of the existing IEq strategy and ensures power production higher than the TCT and IEq configurations by 17.25% and 19.34%, respectively.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 The Authors. Except as otherwise noted, this author-accepted version of a journal article published in Electrical Engineering is made available via the University of Sheffield Research Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Power maximization; PV array reconfiguration; Partial shading; Irradiance equalization (IEq) |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Advanced Manufacturing Institute (Sheffield) > Nuclear Advanced Manufacturing Research Centre |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 10 Jul 2024 13:27 |
Last Modified: | 24 Feb 2025 16:38 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s00202-024-02529-y |
Sustainable Development Goals: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:214683 |