Rosotti, G.P., Teague, R., Dullemond, C. et al. (2 more authors) (2020) The efficiency of dust trapping in ringed protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 495 (1). pp. 173-181. ISSN 0035-8711
Abstract
When imaged at high resolution, many protoplanetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the underlying gas structures are however unknown. In this paper, we present a method to measure the dust–gas coupling α/St and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission line data cubes. As a proof of concept, we then apply the method to two discs with prominent substructure, HD 163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good (α/St ∼ 0.1). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the α turbulent parameter (α ∼ 10−2). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD 163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1 mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2020 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | accretion, accretion discs, planets and satellites: formation, protoplanetary discs, circumstellar matter, submillimetre: planetary systems |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Astrophysics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 01 Jul 2024 10:13 |
Last Modified: | 01 Jul 2024 10:13 |
Status: | Published |
Publisher: | Oxford University Press |
Identification Number: | 10.1093/mnras/staa1170 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:213873 |