Zhang, B., Jin, X., Liang, W. et al. (5 more authors) (2024) TabNet: Locally interpretable estimation and prediction for advanced proton exchange membrane fuel cell health management. Electronics, 13 (7). 1358. ISSN 1450-5843
Abstract
In the pursuit of advanced Predictive Health Management (PHM) for Proton Exchange Membrane Fuel Cells (PEMFCs), conventional data-driven models encounter considerable barriers due to data reconstruction resulting in poor data quality, and the complexity of models leading to insufficient interpretability. In addressing these challenges, this research introduces TabNet, a model aimed at augmenting predictive interpretability, and integrates it with an innovative data preprocessing technique to enhance the predictive performance of PEMFC health management. In traditional data processing approaches, reconstruction methods are employed on the original dataset, significantly reducing its size and consequently diminishing the accuracy of model predictions. To overcome this challenge, the Segmented Random Sampling Correction (SRSC) methodology proposed herein effectively eliminates noise from the original dataset whilst maintaining its effectiveness. Notably, as the majority of deep learning models operate as black boxes, it becomes challenging to identify the exact factors affecting the Remaining Useful Life (RUL) of PEMFCs, which is clearly disadvantageous for the health management of PEMFCs. Nonetheless, TabNet offers insights into the decision-making process for predicting the RUL of PEMFCs, for instance, identifying which experimental parameters significantly influence the prediction outcomes. Specifically, TabNet’s distinctive design employs sequential attention to choose features for reasoning at each decision-making step, not only enhancing the accuracy of RUL predictions in PEMFC but also offering interpretability of the results. Furthermore, this study utilized Gaussian augmentation techniques to boost the model’s generalization capability across varying operational conditions. Through pertinent case studies, the efficacy of this integrated framework, merging data processing with the TabNet architecture, was validated. This work not only evidences that the effective data processing and strategic deployment of TabNet can markedly elevate model performance but also, via a visual analysis of the parameters’ impact, provides crucial insights for the future health management of PEMFCs.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | PEMFC; RUL; TabNet; interpretable; PHM |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 14 May 2024 11:45 |
Last Modified: | 14 May 2024 11:45 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/electronics13071358 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:212469 |