Matella, M. orcid.org/0000-0003-2109-335X, Hunter, K., Balasubramanian, S. et al. (1 more author) (2024) The use of virtual tissue constructs that include morphological variability to assess the potential of electrical impedance spectroscopy to differentiate between thyroid and parathyroid tissues during surgery. Sensors, 24 (7). 2198. ISSN 1424-8220
Abstract
Electrical impedance spectroscopy (EIS) has been proposed as a promising noninvasive method to differentiate healthy thyroid from parathyroid tissues during thyroidectomy. However, previously reported similarities in the in vivo measured spectra of these tissues during a pilot study suggest that this separation may not be straightforward. We utilise computational modelling as a method to elucidate the distinguishing characteristics in the EIS signal and explore the features of the tissue that contribute to the observed electrical behaviour. Firstly, multiscale finite element models (or ‘virtual tissue constructs’) of thyroid and parathyroid tissues were developed and verified against in vivo tissue measurements. A global sensitivity analysis was performed to investigate the impact of physiological micro-, meso- and macroscale tissue morphological features of both tissue types on the computed macroscale EIS spectra and explore the separability of the two tissue types. Our results suggest that the presence of a surface fascia layer could obstruct tissue differentiation, but an analysis of the separability of simulated spectra without the surface fascia layer suggests that differentiation of the two tissue types should be possible if this layer is completely removed by the surgeon. Comprehensive in vivo measurements are required to fully determine the potential for EIS as a method in distinguishing between thyroid and parathyroid tissues.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | thyroidectomy; finite element modelling; model sensitivity study; thyroid and parathyroid tissue discrimination |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Computer Science (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 08 Apr 2024 13:47 |
Last Modified: | 08 Apr 2024 13:47 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/s24072198 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:211276 |