Baber, M.Z., Ahmed, N., Yasin, M.W. et al. (4 more authors) (2024) Abundant soliton solution for the time-fractional stochastic Gray-Scot model under the influence of noise and M-truncated derivative. Discover Applied Sciences, 6 (3). 119. ISSN 3004-9261
Abstract
In this study, we investigate the abundant soliton solutions for the time-fractional stochastic Gray-Scot (TFSGS) model analytically. The Gray-Scot model is considered under the influence of M-truncated derivative and multiplicative time noise. This is a reaction–diffusion chemical concentration model that explains the irreversible chemical reaction process. The M-truncated derivative is applied for the fractional version while Brownian motion is taken in the sense of time noise. The novel mathematical technique is used to obtain the abundant families of soliton solutions. These solutions are explored in the form of shock, complicated solitary-shock, shock-singular, and periodic-singular types of single and combination wave structures. During the derivation, the rational solutions also appear. Moreover, we use MATHEMATICA 11.1 tools to plot our solutions and exhibit several three-dimensional, two-dimensional, and their corresponding contour graphs to show the fractional derivative and Brownian motion impact on the soliton solutions of the TFSGS model. We show that the TFDGS model solutions are stabilized at around zero by the multiplicative Brownian motion. These wave solutions represent the chemical concentrations of the reactants.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Soliton solutions; M-truncated derivative; Stochastic Gray-Scot (TFSGS) model; New MEDA technique |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 20 Mar 2024 11:03 |
Last Modified: | 20 Mar 2024 11:03 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s42452-024-05759-8 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:210492 |