Sadid, A.J., Dar, M.A. orcid.org/0000-0003-2782-9225, Ghowsi, A.F. et al. (1 more author) (2024) Adoption of hooped-battens in cold-formed steel built-up columns for superior axial performance. Scientific Reports, 14 (1). 5170. ISSN 2045-2322
Abstract
Previous research on cold-formed steel (CFS) battened columns has identified the critical factors influencing their performance and accordingly, their limiting values for improved performance have been recommended. However, these studies involved connecting battens to the chords (channels) via their flanges, leaving the slenderest component disconnected from the web. This study introduces a novel hooped-batten (tubular-element) that links both webs and flanges of the chords together, thereby improving the structural integrity of the built-up system and curtailing the half-wave buckling length in the webs. As a result, axial strength and stability in these built-up columns may improve adequately. Firstly, a numerical model of a conventional CFS battened column was developed in ABAQUS and verified against test results on the same reported in literature. Afterward, the validated model was used to simulate the behaviour of CFS built-up columns with hooped-battens. Two key parameters i.e., unbraced chord slenderness and overall column slenderness were varied to explore their influence on the axial behaviour of built-up columns in terms of peak strengths, failure modes and load-displacement characteristics. The performance of the hooped-battened columns was compared with the identical conventional battened columns, which reflects that the former exhibits superior strength and stability characteristics over the latter.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Civil engineering; Engineering |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Civil and Structural Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 11 Mar 2024 16:52 |
Last Modified: | 11 Mar 2024 16:52 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-024-55907-8 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:209894 |