Wang, W. orcid.org/0000-0002-2294-7831, De Souza, M.M. orcid.org/0000-0002-7804-7154, Ghannam, R. et al. (2 more authors) (2023) A novel micro-scaled multi-layered optical stress sensor for force sensing. Journal of Computational Electronics, 22 (2). pp. 768-782. ISSN 1569-8025
Abstract
Miniaturization and integration of sensors on chip has become essential with advancements of artificial intelligence and the Internet of Thing. The size of existing microbend optical stress sensors is too large for integration on a chip, necessitating fundamental change of structural design to achieve micron-sized lithography. In this regard, we demonstrate the design and analysis of a multi-layer microbend optical stress sensor using an advanced Multiphysics simulation model that could be potentially embedded on chips after the experimental tests of the basic microbend optical stress sensor units. The sensor architecture is optimized not just in size, but also the materials in the layers. A well-optimized structure of Glass/Ag/SU8/PDMS architecture delivers best comprehensive performance resulting in a sensitivity in one pitch of 110.42 µm which is 0.00935 N−1 with a linearity of R2 = 0.99868 at a detectable range of 1200 N–2800 N. This work paves way for embedding microbend optical stress sensors on chips to further accelerate sensors for communication and information technologies.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. This is an author-produced version of a paper subsequently published in Journal of Computational Electronics. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Microbend optical stress sensor; Micro-scaled; Simulation; Sensitivity; Linearity |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 26 Feb 2024 14:56 |
Last Modified: | 31 Mar 2024 01:00 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s10825-023-02014-y |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:209585 |