Moffat, J.P., Christofidou, K.A., Pek, M.E. et al. (3 more authors) (2024) Surveying the effects of aging a high C-containing co-based superalloy from the As-cast and solution heat-treated conditions. Metallurgical and Materials Transactions A, 55 (3). pp. 791-802. ISSN 1073-5623
Abstract
The microstructure of the high carbon-containing cobalt-based superalloy, Co-101, has been studied in the as-cast state and following a variety of heat treatments. In the as-cast state both M7C3 and Mo-rich M23C6 carbides were observed in the interdendritic regions. After thermal exposure at temperatures between 1000 °C and 1250 °C for 1, 10, and 100 hours, the M7C3 interdendritic carbide network was observed to transform into a Mo-lean M23C6 carbide. These changes were rationalized with thermodynamic calculations. The carbide transformation liberated carbide-forming elements that resulted in the precipitation of intragranular carbides in the dendritic regions at temperatures below 1150 °C. These carbides in the cast-aged material preferentially formed at the dendrite peripheries early during exposure, leading to wide particle size distributions. Peak hardness in the cast-aged material was attained within the first 10 hours of exposure and softening was observed thereafter. After solution heat treating at 1250 °C for 10 hours, the microstructure of Co-101 comprised an M23C6 interdendritic carbide network and solid solution dendrites supersaturated with carbide-forming elements. Subsequent aging of this microstructure for 100 hours at 900 °C led to a high number density and narrow particle size distribution of intragranular carbides. The characteristics of these carbides in the solution-aged material resulted in greater hardness, which was retained for longer durations of exposure, than the cast-aged specimens.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Manufacturing Engineering; Engineering |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 20 Feb 2024 16:28 |
Last Modified: | 20 Feb 2024 16:28 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s11661-023-07283-7 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:209348 |