Smith, H., Townsend, L.T., Mohun, R. et al. (4 more authors) (2024) Fabrication, defect chemistry and microstructure of Mn-doped UO2. Scientific Reports, 14 (1). 1656. ISSN 2045-2322
Abstract
Mn-doped UO2 is under consideration for use as an accident tolerant nuclear fuel. We detail the synthesis of Mn-doped UO2 prepared via a wet co-precipitation method, which was refined to improve the yield of incorporated Mn. To verify the Mn-doped UO2 defect chemistry, X-ray absorption spectroscopy at the Mn K-edge was performed, in addition to X-ray diffraction, Raman spectroscopy and high-energy resolved fluorescence detection X-ray absorption near edge spectroscopy at the U M4-edge. It was established that Mn2+ directly substitutes for U4+ in the UO2 lattice, accompanied by oxygen vacancy (Ov) charge compensation. In contrast to other divalent-element doped UO2 materials, compelling evidence for U5+ in a charge compensating role was not found. This work furthers understanding of the structure and crystal chemistry of Mn-doped UO2, which could show potential advantages as a novel efficient advanced nuclear fuel.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Energy; Nuclear fuel |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Materials Science and Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 22 Jan 2024 14:52 |
Last Modified: | 22 Jan 2024 14:52 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-023-50676-2 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:208110 |