Bell, C.A. orcid.org/0000-0002-7437-2793, Magkourilou, E., Ault, J.R. et al. (2 more authors) (2024) Phytophagy impacts the quality and quantity of plant carbon resources acquired by mutualistic arbuscular mycorrhizal fungi. Nature Communications, 15. 801. ISSN 2041-1723
Abstract
Arbuscular mycorrhizal (AM) fungi associate with the roots of many plant species, enhancing their hosts access to soil nutrients whilst obtaining their carbon supply directly as photosynthates. AM fungi often face competition for plant carbon from other organisms. The mechanisms by which plants prioritise carbon allocation to mutualistic AM fungi over parasitic symbionts remain poorly understood. Here, we show that host potato plants (Solanum tuberosum cv. Désirée) selectively allocate carbon resources to tissues interacting with AM fungi rather than those interacting with phytophagous parasites (the nematode Globodera pallida). We found that plants reduce the supply of hexoses but maintain the flow of plant-derived fatty acids to AM fungi when concurrently interacting with parasites. Transcriptomic analysis suggest that plants prioritise carbon transfer to AM fungi by maintaining expression of fatty acid biosynthesis and transportation pathways, whilst decreasing the expression of mycorrhizal-induced hexose transporters. We also report similar findings from a different plant host species (Medicago truncatula) and phytophagous pest (the aphid Myzus persicae). These findings suggest a general mechanism of plant-driven resource allocation in scenarios involving multiple symbionts.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > School of Biology (Leeds) |
Funding Information: | Funder Grant number BBSRC (Biotechnology & Biological Sciences Research Council) Not Known |
Depositing User: | Symplectic Publications |
Date Deposited: | 15 Jan 2024 11:03 |
Last Modified: | 05 Feb 2024 16:05 |
Status: | Published |
Publisher: | Nature Research |
Identification Number: | 10.1038/s41467-024-45026-3 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:207557 |