Ghalaii, M. orcid.org/0000-0002-4242-8748 and Pirandola, S. orcid.org/0000-0001-6165-5615 (2022) Quantum communications in a moderate-to-strong turbulent space. Communications Physics, 5. 38. ISSN 2399-3650
Abstract
Since the invention of the laser in the 60s, one of the most fundamental communication channels has been the free-space optical channel. For this type of channel, a number of effects generally need to be considered, including diffraction, refraction, atmospheric extinction, pointing errors and, most importantly, turbulence. Because of all these adverse features, the free-space optical (FSO) channel is more difficult to study than a stable fiber-based link. For the same reasons, only recently it has been possible to establish the ultimate performances achievable in quantum communications via free-space channels, together with practical rates for continuous variable (CV) quantum key distribution (QKD). Differently from previous literature, mainly focused on the regime of weak turbulence, this work considers the FSO channel in the more challenging regime of moderate-to-strong turbulence, where effects of beam widening and breaking are more important than beam wandering. This regime may occur in long-distance free-space links on the ground, in uplink to high-altitude platform systems (HAPS) and, more interestingly, in downlink from near-horizon satellites. In such a regime we rigorously investigate ultimate limits for quantum communications and show that composable keys can be extracted using CV-QKD.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2022. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Pollard Institute (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 05 Jan 2024 14:32 |
Last Modified: | 05 Jan 2024 14:32 |
Status: | Published |
Publisher: | Nature |
Identification Number: | 10.1038/s42005-022-00814-5 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:206765 |