Ahmouda, A. and Gladwin, D.T. orcid.org/0000-0001-7195-5435 (2023) Enhanced dynamic control strategy for stacked dynamic regulation frequency response services in battery energy storage systems. Energies, 16 (23). 7686. ISSN 1996-1073
Abstract
Energy storage systems are undergoing a transformative role in the electrical grid, driven by the introduction of innovative frequency response services by system operators to unlock their full potential. However, the limited energy storage capacity of these systems necessitates the development of sophisticated energy management strategies. This paper investigates the newly introduced frequency response service, Dynamic Regulation, within the Great Britain electrical grid. Our study not only establishes control parameters but also demonstrates a novel approach to energy management that pushes the boundaries of the allowable service envelope. We present two distinctive control methods, the first serving as a reference for standard response, and the second as a dynamic control approach, exploiting the extremities of the allowable service envelope. A comprehensive sensitivity analysis that considers availability, the number of equivalent full cycles, and cost–revenue analysis based on grouped dynamic control state of charge setpoints is carried out. Our results underscore that the optimization of average availability takes precedence over merely minimizing the number of cycles, which leads us to define a target state of charge range of between 40% and 45% for a 1-h battery to achieve an availability >95%. Furthermore, our study presents simulated results utilizing real-world frequency data, which reveal the transformative potential of the latter control method. By enhancing the availability of battery energy storage systems, this innovative approach promises not only higher revenues for the asset owner but also assists the system operator in managing frequency.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
Keywords: | energy storage system; dynamic regulation; energy management; frequency response; dynamic control |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 11 Dec 2023 17:02 |
Last Modified: | 11 Dec 2023 17:02 |
Status: | Published |
Publisher: | MDPI AG |
Refereed: | Yes |
Identification Number: | 10.3390/en16237686 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:206454 |