Edmans, J.G. orcid.org/0000-0002-4539-9145, Murdoch, C. orcid.org/0000-0001-9724-122X, Hatton, P.V. orcid.org/0000-0001-5234-1104 et al. (4 more authors) (2024) Bioactive protein and peptide release from a mucoadhesive electrospun membrane. Biomedical Materials & Devices, 2 (1). pp. 444-453. ISSN 2731-4812
Abstract
Protein-based biologics constitute a rapidly expanding category of therapeutic agents with high target specificity. Their clinical use has dramatically increased in recent years, but administration is largely via injection. Drug delivery across the oral mucosa is a promising alternative to injections, in order to avoid the gastrointestinal tract and first-pass metabolism. Current drug delivery formulations include liquid sprays, mucoadhesive tablets and films, which lack dose control in the presence of salivary flow. To address this, electrospun membranes that adhere tightly to the oral mucosa and release drugs locally have been developed. Here, we investigated the suitability of these mucoadhesive membranes for peptide or protein release. Bradykinin (0.1%) or insulin (1, 3, and 5%) were incorporated by electrospinning from ethanol/water mixtures. Immersion of membranes in buffer resulted in the rapid release of bradykinin, with a maximal release of 70 ± 12% reached after 1 h. In contrast, insulin was liberated more slowly, with 88 ± 11, 69.0 ± 5.4, and 63.9 ± 9.0% cumulative release of the total encapsulated dose after 8 h for membranes containing 1, 3, and 5% w/w insulin, respectively. Membrane–eluted bradykinin retained pharmacological activity by inducing rapid intracellular calcium release upon binding to its cell surface receptor on oral fibroblasts, when examined by flow cytometry. To quantify further, time-lapse confocal microscopy revealed that membrane–eluted bradykinin caused a 1.58 ± 0.16 fold-change in intracellular calcium fluorescence after 10 s compared to bradykinin solution (2.13 ± 0.21), relative to placebo. In conclusion, these data show that electrospun membranes may be highly effective vehicles for site-specific administration of biotherapeutic proteins or peptides directly to the oral mucosa for either local or systemic drug delivery applications.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Electrospinning; Drug delivery; Peptides; Oral mucosa; Mucoadhesion; Bradykinin; Insulin |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Clinical Dentistry (Sheffield) |
Funding Information: | Funder Grant number Engineering and Physical Sciences Research Council EP/L016281/1 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 29 Nov 2023 16:37 |
Last Modified: | 04 Mar 2024 12:47 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s44174-023-00098-5 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:205664 |