Daffern-Powell, E.C. orcid.org/0000-0002-3767-8187 and Parker, R.J. orcid.org/0000-0002-1474-7848 (2022) Evaporation before disruption: comparing time-scales for Jovian planets in star-forming regions. Monthly Notices of the Royal Astronomical Society, 517 (2). pp. 2103-2110. ISSN 0035-8711
Abstract
Simulations show that the orbits of planets are readily disrupted in dense star-forming regions; planets can also be exchanged between stars, or become free-floating and then be captured by other stars. However, dense star-forming regions also tend to be populous, containing massive stars that emit photoionizing radiation, which can evaporate the gas in protoplanetary discs. We analyse N-body simulations of star-forming regions containing Jovian-mass planets and determine the times when their orbits are altered, when they become free-floating, and when they are stolen or captured. Simultaneously, we perform calculations of the evolution of protoplanetary discs when exposed to FUV radiation fields from massive stars in the same star-forming regions. In almost half (44 per cent) of the planetary systems that are disrupted – either altered, captured, stolen or become free-floating, we find that the radius of the protoplanetary disc evolves inwards, or the gas in the disc is completely evaporated, before the planets’ orbits are disrupted. This implies that planets that are disrupted in dense, populous star-forming regions are more likely to be super-Earths or mini-Neptunes, as Jovian mass planets would not be able to form due to mass-loss from photoevaporation. Furthermore, the recent discoveries of distant Jovian mass planets around tightly packed terrestrial planets argue against their formation in populous star-forming regions, as photoevaporation would preclude gas giant planet formation at distances of more than a few au.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022 The Author(s). Except as otherwise noted, this author-accepted version of a journal article published in Monthly Notices of the Royal Astronomical Society is made available under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | methods: numerical; planets and satellites: dynamical evolution and stability; stars: kinematics and dynamics; photodissociation region (PDR) |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Science (Sheffield) > Department of Physics and Astronomy (Sheffield) |
Funding Information: | Funder Grant number ROYAL SOCIETY DH150108 |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 19 Sep 2023 14:50 |
Last Modified: | 19 Sep 2023 14:50 |
Status: | Published |
Publisher: | Oxford University Press (OUP) |
Refereed: | Yes |
Identification Number: | 10.1093/mnras/stac2797 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:203451 |