Pu, S. orcid.org/0000-0003-0144-1548, Balram, A.C. orcid.org/0000-0002-8087-6015, Fremling, M. orcid.org/0000-0002-4158-3041 et al. (2 more authors) (2023) Signatures of Supersymmetry in the ν=5/2 Fractional Quantum Hall Effect. Physical Review Letters, 130 (17). 176501. ISSN 0031-9007
Abstract
The Moore-Read state, one of the leading candidates for describing the fractional quantum Hall effect at filling factor ν=5/2, is a paradigmatic p-wave superconductor with non-Abelian topological order. Among its many exotic properties, the state hosts two collective modes: a bosonic density wave and a neutral fermion mode that arises from an unpaired electron in the condensate. It has recently been proposed that the descriptions of the two modes can be unified by postulating supersymmetry (SUSY) that relates them in the long-wavelength limit. Here we extend the SUSY description to construct wave functions of the two modes on closed surfaces, such as the sphere and torus, and we test the resulting states in large-scale numerical simulations. We demonstrate the equivalence in the long-wavelength limit between SUSY wave functions and previous descriptions of collective modes based on the Girvin-MacDonald-Platzman ansatz, Jack polynomials, and bipartite composite fermions. Leveraging the first-quantized form of the SUSY wave functions, we study their energies using the Monte Carlo method and show that realistic ν=5/2 systems are close to the putative SUSY point, where the two collective modes become degenerate in energy.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | This item is protected by copyright. This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Theoretical Physics (Leeds) |
Funding Information: | Funder Grant number Leverhulme Trust RL-2019-015 Royal Society IES\R2\202052 |
Depositing User: | Symplectic Publications |
Date Deposited: | 09 Aug 2023 11:13 |
Last Modified: | 09 Aug 2023 11:13 |
Status: | Published |
Publisher: | American Physical Society |
Identification Number: | 10.1103/physrevlett.130.176501 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:202283 |