Lewis, H.I.J., Jin, X., Guo, B. et al. (8 more authors) (2023) Anomalous excess noise behavior in thick Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes. Scientific Reports, 13. 9936. ISSN 2045-2322
Abstract
Al0.85Ga0.15As0.56Sb0.44 has recently attracted significant research interest as a material for 1550 nm low-noise short-wave infrared (SWIR) avalanche photodiodes (APDs) due to the very wide ratio between its electron and hole ionization coefficients. This work reports new experimental excess noise data for thick Al0.85Ga0.15As0.56Sb0.44 PIN and NIP structures, measuring low noise at significantly higher multiplication values than previously reported (F = 2.2 at M = 38). These results disagree with the classical McIntyre excess noise theory, which overestimates the expected noise based on the ionization coefficients reported for this alloy. Even the addition of 'dead space' effects cannot account for these discrepancies. The only way to explain the low excess noise observed is to conclude that the spatial probability distributions for impact ionization of electrons and holes in this material follows a Weibull-Fréchet distribution function even at relatively low electric-fields. Knowledge of the ionization coefficients alone is no longer sufficient to predict the excess noise properties of this material system and consequently the electric-field dependent electron and hole ionization probability distributions are extracted for this alloy.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Optical sensors; Optoelectronic devices and components |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 26 Jun 2023 15:41 |
Last Modified: | 26 Jun 2023 15:41 |
Status: | Published |
Publisher: | Springer Nature |
Refereed: | Yes |
Identification Number: | 10.1038/s41598-023-36744-7 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:200889 |